

SCORGTM – Tutorial for Thermodynamic module

SCORG is a tool for the design and CFD pre-processing of rotary twin screw machines. It includes modules for grid generation; importing and editing rotor profiles; and multi-domain thermodynamic chamber module. For more information on the product please visit the website: <u>www.pdmanalysis.co.uk</u> or refer to documentation help.

This tutorial lists the steps for setting up and performing Thermodynamic calculation which could be used for performance prediction of oil free and oil injected screw compressors as a preliminary setup of CFD simulation for Twin Screw Compressor. The user is expected to be familiar with screw machines. It is highly recommended that the users who attempt this tutorial study the books on the performance prediction methods for screw compressors¹². This Tutorial should be studied alongside the SCORGTM User Manual.

The steps explained in this tutorial are demonstrated for Windows 7, x64 bit OS. Refer to SCORGTM Installation Guide V5.8 for the system and hardware requirements.

Table of Contents

1	Iı	ntroduction	2
2	S	et Geometrical Clearances	9
3	S	et and calculate Geometry	11
4	S	et and calculate Thermodynamics	19
	4.1	Single thermodynamic calculation of Oil free air compressor	19
	4.2	Changing compressor geometry and operating parameters	23
	4.3	Calculating oil free case for variety of operating conditions	27
	4.4	Calculating Oil injected case	30
5	Т	hermodynamics in batch mode	
6	S	ummary	48
7	В	ibliography	49

² A. Kovacevic. N. Stosic, I.K. Smith, Screw Compressor Three Dimensional Computational Fluid Dynamics and Fluid Solid Interaction, Springer, 2006, ISBN 3-540-36302-5

¹ N. Stosic, I.K. Smith, A. Kovacevic Screw Compressor Mathematical Modelling and Performance Calculation, Springer, UK 2005, ISBN-10 3-540-24275-9

1 Introduction

Screw Compressors are rotary positive displacement machines. They can be oil free or oil injected. Oil free compressors require rotors to be synchronised by additional timing gears on rotor shaft in order to maintain the contact free operation. In the oil injected compressor one rotor drives the other through direct contact, Figure 1.1.

Figure 1.1 Oil injected twin screw compressor cross section

The screw compressor rotors are helically lobed gears with special rotor profile. Together with the casing they form a closed interlobe space called the working chamber which changes the size and shape during the operation of the machine. The working chamber itself is periodically connected to the suction and discharge chambers through flow areas which vary with time both in shape and size. The schematic view of a screw machine (compressor, pump or a motor) is shown in Figure **1.2**.

Figure 1.2 Configuration of a screw compressor

In the chamber model it is assumed that all thermodynamic values, such as the pressure, temperature, density etc. are uniform within the respective control volume. Any of the control volumes can be considered as open thermodynamic systems, which exchange fluid mass and energy with the environment, as shown in Figure 1.3. The mass and energy flows, in and out of the control volume affect the quantity of mass and internal energy of the fluid inside the working chamber. The rate of change of the mass and energy within the working chamber are defined by the conservation laws of mass and energy respectively expressed in terms of differential equations. Other phenomena within the control volume and at its boundaries are modelled by a number of algebraic equations which describe leakage, inlet and outlet fluid velocities, oil injection and heat exchange with environment and oil. The model is closed by the equation of state of the working fluid which can be defined as ideal or real gas.

Figure 1.3 Schematic view of a screw machine chamber configuration

This Tutorial will provide a step by step guide to setup and execute thermodynamic simulation of a typical twin screw compressor. An example of a dry air compressor with 3/5 lobe combination, L/D ratio of 1.6 and wrap angle 285° is used in the tutorial. The effect of oil injection will also be demonstrated.

Start SCORGTM Project

- ► Launch SCORGTM on the Desktop.
- ► Select File \rightarrow New

E	🛃 sc	ORG																	×
	File	Edit	Run	Vie	w	Unit	5	Help											
		New	Ctrl+	N	6) ¢	×	Ê	STOP	%	ş	1 9	+	T 🦉	9				
Γ	2	Open	Ctrl+	0															
		Close			_														
	H	Save	Ctrl	+S	- 1														
		Save As.			- 1														
		Import			•														
		Export																	
		Most Re	cent		۶														
	0	Exit	Ctrl+	Q	- 1														
	_				_														

► Select N35_Template.spt \rightarrow Open

🛃 Open	🛃 Open									
🔾 🗸 🖉 🖉 🖉	opment 🕨	SCORG(C) SGUI	Scorg ► bin ► T	emplates	- - f 	Search Templates		9		
Organize 🔻 New fo	older					:== ▼		0		
☆ Favorites	^ Nar	me		Date modified						
🧮 Desktop	2	A46_Template.spt		27/08/2014 11:46						
〕 Downloads	2	Circ46_Template.spt		27/08/2014 11:46						
🕮 Recent Places	2	Inv22_Template.spt		27/08/2014 11:46						
퉬 SkyDrive		Inv33_Template.spt		27/08/2014 11:46						
	=	N35_Template.spt	27/08/2014 11:46							
🥱 Libraries	2	N45_Template.spt		27/08/2014 11:46						
Documents	2	N46_Template.spt		27/08/2014 11:46		No preview available.				
J Music	2	N56_Template.spt		27/08/2014 11:46						
Pictures	2	N57_Template.spt		27/08/2014 11:46						
Subversion	- 🦻	N67_Template.spt		27/08/2014 11:46						
🛃 Videos										
🖳 Computer										
🚢 Local Disk (C:)										
👝 D (D:)	▼ ◀			E.				_		
Fil	le name: 1	N35 Template.spt			-	Scorg template (spt) (*.	spt)	-		
						Open	Cancel			

► Save the project in a new folder named SCORG_Thermodynamics→ SCORG_Thermodynamics_Tutorial.spf

► The GUI of SCORGTM in the figure bellow shows the mains items of the front panel.

- ► Go to Help \rightarrow Tutorials \rightarrow Folder opens
- Copy the compressor rotor profile files → [35MaleProfile_P1.dat and 35FemaleProfile_P2.dat]
- ▶ Paste these files in the working directory \rightarrow SCORG_Thermodynamics

Correct on the second seco										
Organize 👻 🧾 Open 🛛	Share with 🔻	Burn New folder		:≡ ▼ 🚺	?					
🔆 Favorites	^	Name	Date modified	Туре	Siz					
📃 Desktop		35FemaleProfile_P2.dat	28/01/2016 17:53	DAT File						
〕 Downloads		35MaleProfile_P1.dat	28/01/2016 17:53	DAT File						
🗐 Recent Places		SCORG_CFX_Setup_V5.2.pdf	28/01/2016 17:53	Adobe Acrobat D						
	_	SCORG_CFX_Tutorial_Ports_V5.0.cfx	28/01/2016 17:53	ANSYS v130 .cfx File	2					
🥃 Libraries	=	SCORG_CFX_Tutorial_V5.0.ccl	28/01/2016 17:53	CCL File						
Documents		🔁 SCORG_Pumplinx_Setup_V5.2.pdf	28/01/2016 17:53	Adobe Acrobat D						
🁌 Music		BCORG_Pumplinx_Tutorial_Ports_V5.0.sgrd	28/01/2016 17:53	Simerics Grid File						
Pictures		SCORG_Tutorial_Ports.ccm	11/03/2016 18:29	CCM File	1					
Videos Videos Vindows (C:) SSD_Hybrid (E:)					4					
Organize ▼ Share with ▼ Ne	ent → SCORG cas	ses > SCORGThermodynamics >	✓ 4y Search SCORG	Thermodynamics	× ~					
★ Favorites ■ Desktop	Develo SCORGTH	opment library ermodynamics		Arrange by: Folder 🔻						
Downloads Recent Places	Name	^	Date modified	Туре	Size					
Creative Cloud Files	SCORO	G_Thermodynamics_Tutorial	19/09/2016 08:51	File folder						
	35Fem	aleProfile_P2.dat	07/07/2016 22:11	DAT File	4					
词 Libraries	a 35Male	Profile_P1.dat	07/07/2016 22:11	DAT File						
J툎 Computer										
💼 Network										

▶ In profile setup adjust Axis Distance to 93 mm

Profile Setup		
Profile Choice	User Sp 🔻	
Axis Distance	93	mm
Z1	3	
Z2	5	
GAPI	0.18	mm
GAPR	0.18	mm
GAPA	0.1	mm
Clearance Distribution	Clearences	

► Set Length Units to meters

Inputs Units Pro	perties
Variable	Units
Pressure	bar 💌 🗏
Temperature	°C 🔹
Length	m
Density	kg/m³ 💌 🔻

▶ Go to User Profile \rightarrow Browse and Select the Male Rotor Profile from working directory.

35MaleProfile_P1.dat

User Profile				
- Imported Profiles -				
Import Male	Import Female	Reset To Imported	[*] * 10.000	 ÷-60
Default Profiles				
Write To E	efault	Reset To Default	and a state	
Profile Transforma	tions		4	
Apply to both	Male	Female		
Rotate (Deg)	0.00	0.00		
Scale	1.000	1.000 🜩		
Flip Coordinates				
Mirror About X				
Mirror About Y				
ACCE	PT Transform	ations		

Click 'Yes' to overwrite P1.dat.

Similarly Select the Female Rotor Profile.

35FemaleProfile_P2.dat

► Click Write To Default.

User Profile		
- Imported Profiles -		
Import Male	Import Female	Reset To Imported
Default Profiles		_
Write To D	efault	Reset To Default
Profile Transformat	ions	
Apply to both	Male	Female
Rotate (Deg)	0.00	0.00 ≑
Scale	1.000	1.000
Flip Coordinates		
Mirror About X		
Mirror About Y		
ACCE	PT Transfo	mations

Click Right button and select Refresh to view new profiles.

▶ Inspect the Rotor Profile in the GUI for gaps in the tips, starting points of the profile indicated by the small yellow circles. For more information please see Section 6.4 in the SCORGTM User manual.

Set Geometrical Clearances 2

Profile Setup		
Profile Choice	User Sp 🗸	
Axis Distance	93	mm
Z1	3	
Z2	5	
GAPI	0.18	mm
GAPR	0.18	mm
GAPA	0.1	mm
NL	5	
NR	0	

▶ Set the following Profile Parameters to get desired clearance size:

Run Geometry calculation through the shortcut highlighted in the figure below ►

Run View Units Help i d 🖻 🖬 < 🔦 🞯 🎜 🗶 💼 🖻 G T <mark>🍫 👌 🏦 🕥 👯 🏹 🞯 🗢 💷 🗠 💷 🖉 🚳 🖉</mark>

▶ Run Rack generation procedure by clicking on Numerical rack shortcut button.

Edit

File

This is required to inspect the profile and make any required corrections of the imported rotor profiles.

You will receive the following message

Default pr	ofiles!
<u>^</u>	P1.dat and P2.dat files have been replaced. Do you want to use them as default profiles?
	Yes No Cancel

- Click on Yes to accept correction of the profiles.
- Now you can inspect the Interlobe clearances which the imported profile will have with the given axis distance. To do that, Click with the right mouse button on file Case->Thermodynamics->Output->GapI_dist.text, select Graphical view and select columns 2 and 3 for X and Y axis respectively. The normal clearance distribution along the sealing line represented in the relative position from the beginning to the end of the profile is shown. In the diagram below it is visible that the normal clearance varies from 0.060mm to 0.1 mm in the given profile.

If you want to use this clearance for calculation of thermodynamic performance then set the GAPI value to 0.

If you want to set Interlobe Clearance in thermodynamic through the Input value GAPI, then setup the GAPI to desired clearance value.

If you want to completely remove the clearance from the imported profile, then delete the file Case->Thermodynamics->Input->GapI.dat (shown in the red box abover). Then recalculate Geometry and refresh the diagram. You should see the diagram below.

► Save the Project.

3 Set and calculate Geometry

In order to perform thermodynamic calculation and to obtain expected results, it is important to set up all geometry and operational inputs correctly. This will be adjusted through Input window for Geometry

Inputs	Units	Properties	
⊿ · SCO	RG_Them	odynamics_T	utorial
⊳·	Profile		
⊿ - (Geometry		
	Rotor C	Configuration	
	- Machin	e Configuratio	n
	- Restrai	nts	
	- Rotor M	Novements	
	⊳ · Domain	ns	
⊳	Thermodyn	amics	
⊳.(Grids		

▶ Set values for Rotor Configuration and Machine Configuration as indicated below

Rotor Configuratio	n					
Relative Length	1.6					
Rotor Length	203.718	mm				
Wrap Angle	285	Deg				
Pitch Low Pressure Port	0	mm	Ŧ	Rotor Configuratio	n	
Pitch High Pressure Port	0	mm	8	Machine Configura	ation	
Rotor Pitch	Uniform 👻		М	achine Type	Screw V	•
Rotor Profile	Constant 💌		N	Gate	1	
Main Rotor Centre X	0	mm	C	ompression Start	0	Deg
Main Rotor Centre Y	0	mm	C	ompression End	161.792	Deg
Main Rotor Centre Z	0	mm	Ve	olume Index	1.8	
Main Rotor Start Angle	0	Deg	A	ngle of Radial Dischar	0	Deg
Rotor Stage Number	0		E	Rotor	211	GPa
Main Rotor Helix	Right 💌		α	Rotor	1E-05	m/m/°C
Gate Rotor Position	Right 🗸		E	Casing	211	GPa
			α	Casing	1E-05	m/m/°C
Machine Configura	ation		W	all Roughness	0	mm
Restraints						
Rotor Movements			÷	Restraints		

The next geometry setup is related to setting size of flow domains and passages shown in Figure 1.2 and Figure 1.3.

Inputs	Units	Properties	
⊿ · SCO	RG_Therm	odynamics_T	utorial
⊳.	Profile		
A.(Geometry		
	···· Rotor Co	onfiguration	
	Machine	e Configuratio	n
	- Restrain	nts	
	- Rotor M	ovements	
		s	
	Low	Pressure Pip	e
	Low	Pressure Re	servoir
	Low	Pressure Po	rt
	High	n Pressure Po	ort
	High	n Pressure Re	eservoir
	···· Higł	n Pressure Pip	be
Þ	Thermodyna	amics	
⊳·	Grids		

The volumes of these domains and flow areas between them are set through the menu shown in the figure on the left.

The domains in the Inputs are also shown in Figure 1.2 with following numbers:

- ► Low pressure Pipe Domain 1
- ► Low Pressure Reservoir Domain 2
- ► High Pressure Reservoirs Domain 4
- ► High Pressure Pipe Domain 5

All these volumes are set by the equivalent diameter and length of each of these domains.

Flow areas between these domains in reference to Figure 1.2 are defined in the following way:

- The Area 6 between the Low pressure pipe (1) and Low pressure Reservoir (2) is defined by the Diameter of the Low Pressure Pipe
- The Area 9 between the High Pressure Reservoir (4) and High Pressure Pipe (5) is defined by the Diameter of the High Pressure Pipe
- Area between the Low Pressure Reservoir (2) and the Working Chamber (3) is called Low pressure Port. It is calculated by the Geom program as described in the User Manual while in the Inputs it is only selected if the port is Axial, Radial or both. The size of the port is defined by the Compression Start Angle in Machine Configuration.
- Area between the Working Chamber (3) and the Low Pressure Reservoir (4) is called High Pressure Port. It is calculated by the Geom program as described in the User Manual. In Inputs it is only selected as the Axial, Radial port or both. The size of the port is defined by the Compression End Angle in Machine Configuration which directly depends on the Volume Index.
- Set values of the flow domains as shown below

Low Pressure Pipe				
Diameter	100	mm		
Length	200	mm		
Low Pressure Reserved	voir			
Low Pressure Reser Diameter	voir 100	mm		
Low Pressure Reser Diameter Length	voir 100 100	mm mm		

Low Pressure Port				
Port Type	Axial 🗸			
Depth Radial	8	mm		
Circular Divisions	100			
Radial Divisions	8			
Depth Axial	9	mm		
Angle Radial End Face	45	Deg		
Length Radial	21	mm		
Axial Clearance	0.2	mm		
Orthogonalisation Factor	1			

High Pressure Reservoir			
Diameter	75	mm	
Length	75	mm	
🗉 High Pressu	ure Pipe		
High Pressu Diameter	ire Pipe 50	mm	
 High Pressu Diameter Length 	re Pipe 50 200	mm mm	

High Pressure Port			
Port Type	Axial	-	
Inner Circle Diameter	1		
Circular Divisions	20		
Radial Divisions	20		
Z Divisions	5		
Length	16	mm	
Axial Clearance	0.13	mm	
Orthogonalisation Factor	0.6		

Calculate Geometry by clicking on the shortcut button for geometry calculation File Edit Run View Units Help

► Inspect geometry diagrams

★SCORG[™]

Port Areas – The diagram shows the area of the Suction and Discharge Ports as function of the rotation angle as well as any other ports if they exist, such as oil injection port or economiser port. The diagram also shows the Volume curve and two vertical lines demonstrate start and end of the compression process.

Leakage Areas – The diagram shows the flow area through leakage paths as function of the main shaft angle. These include leakage areas of the inflow and outflow leakages.

The inflow leakage paths are these through which fluid leaks in the working chamber:

- Leading blow hole area, Leading male and female tip leakage area (radial leakage) and leading axial gap area

The outflow leakage paths through which fluid leaks from the working domain are:

- Trailing blow hole area, Trailing male and female tip leakage area (radial leakage), interlobe gap area and trailing axial gap area.

Sealing line – The diagram shows the sealing line in three coordinate planes, XY, YZ and ZX.

The influence of the change in clearances on the performance of the machine will be evaluated in the next Section.

Inspect geometry report

User Profile × Geometry × Geometry.txt	×
######### Screw compressor	geometry data ##########
Date: 30-Sep-2020	Time: 22:28:19
Rotor centre distance:	93.000 mm
Number of lobes: Pitch circle diameters: Outer rotor diameters: Inner rotor diameters: Diameters difference : Wrap angle: Rotor lead:	3 5 69.750 116.250 mm 127.324 120.262 mm 65.535 58.473 mm 30.895 30.895 mm 285.000 171.000 deg 257.328 428.880 mm
Helix angle: Lead angle: Rotor length:	40.416 deg 49.584 deg 203.718 mm
Rotor lobe area:	1739. 1161. mm2
Cross section area: Max. chamber volume: Displacement:	8700. mm2 570426. mm3 1711277. mm3/rev 1.711 l/rev
Ports Axial LP port area: Radial LP port area: Axial HP port area: Radial HP port area:	2900. mm2 0. mm2 2742. mm2 0. mm2
Leakage gaps Interlobe SL length: Interlobe SL area: Blow-hole area: Radial gap area: Axial gap area:	203.462 mm 36.589 mm2 4.375 mm2 66.583 49.041 mm2 4.634 4.634 mm2

The values shown in two columns relate to Male (left) and Female rotor (right)

View the axial discharge port

The shape and the size of the discharge port is defined by the Compression End angle which is in turn defined by the Volume Index Vi. In order to inspect the shape and size of the discharge port please calculate grid for the discharge port using highlighted shortcut button below and then display the port mesh using the shortcut button shown in the rectangle.

The shape and size of the port is displayed below. It will be later shown how it changes with the change in Vi.

4 Set and calculate Thermodynamics

Once the geometry of the compressor is correctly defined, it is possible to perform thermodynamic calculation. The objective of this calculation is to determine flow rate and power of the specified compressor operating at certain operating conditions and with the certain working fluid. The performance prediction will be obtained using multi domain chamber thermodynamic model. The basis of this model is explained in Stosic et al, 2005. More detail available through the SCORGTM user manual.

4.1 Single thermodynamic calculation of Oil free air compressor

Inputs	Units	Properties	
⊿ · SCO	RG_Thermo	dynamics_T	utorial
⊳.	Profile		
⊳ . (Geometry		
	Thermodyna	mics	
	Working	Conditions	
	- Working	Fluid	
	- Oil Inject	ion	
	- Bearings	and seals	
	- Thermod	lynamic Cont	rols
⊳√	Grids		

► Thermodynamic controls

Additional Injection	s n Port	
Speed loop	1	
Psuc loop	1	
Pdis loop	1	
Convergence loop	20	
∆Wtip	5	m/s
ΔPsuc	0	bar
ΔPdis	1E-05	bar
∆Tevp	5	°C
ΔTcon	5	°C
Clearance adjustment	No	
Short report settings	Settings]
Thermodynamic solver	SCORG ~	

► Working Fluid

The setup for Thermodynamic calculation is performed through the Input controls shown in the control window on the left.

The controls are divided in 5 categories:

- Thermodynamic controls
- Working Fluid
- Working conditions
- Injection of liquid
- Bearing and seal setup

For a single calculation of thermodynamic performance at one operating condition set the parameters in thermodynamic controls as listed below.

Set as low as possible number of convergence loops to get fast but accurate calculation. Usually 3-4 loops are sufficient to achieve good accuracy. The method on how to check if it is sufficient will be explained through temperature diagrams.

Please set values in your case to match the values in this window

Working Fluid		
Fluid	Ideal Gas 🛛 🔻	
Gamma	1.4	
RGas	287	J/(kg.K)
Z	1	

The working fluid can be ideal or real gas. In this example ideal gas will be used. The values in the window on the left are values for air.

Working Conditions

Working Conditions			
Wtip	80	m/s	
Rotor Speed	12000	RPM	
PO	1	bar	
Pr	3	bar	
то	19.85	°C	
Tr	76.85	°C	
Теvp	-5.15	°C	
Tcond	39.85	°C	
T Ambient	19.85	°C	
Include heat transfer	No 🗸		
x	1		

Liquid injection

Fluid Injection	Off	\sim	
Р	3		bar
Т	36.85		°C
Injection Angle	63.025		Deg
Axial Position	100		mm
Port Diameter	5		mm
Doil	0.01		mm
CpOil	2000		J/(kg.K)
ρ	845		kg/m³
Viscosity of Oil	5E-05		m²/s

The rotational speed can be defined by the tip speed or by the Rotor speed. Whichever value is set, the other will automatically adjust according to the size of the rotor.

The values required to be set for this calculation are

P0 – Suction pressure (absolute)

T0 – Suction Temperature

Pr – Discharge Pressure.

TAmbient – Ambient temperature used for calculation of conductive heat transfer from the compressor body.

For oil free screw compressor the Oil injection control button should be off. In such case it is irrelevant what are the other values in this input window as these are not used in calculation.

Bearings and seals

Bearings and seals		
Bearing Type	Rolling 🗸	
N Shaft	1	
Seal Ploss	300	W/1000
Diameter Factor	0.023	
Speed Factor	0.001	

Oil free air compressors usually have rolling element bearings and their four mechanical seals are designed to prevent mixing of air and oil in the working chamber.

Seal Power losses are defined per 1000 rpm and are specified by manufacturers.

For this calculation, please set values as indicated in the input windows.

Inspect thermodynamic diagrams

The above two diagrams show Pressure change with the angle of rotation and the temperature change with the angle of rotation respectively. The green line marked with CW represents the main working chamber.

The blue (CW1) and green (CW2) lines are low pressure pipe and reservoir respectively.

The red (CW4) and orange (CW5) lines are high pressure reservoir and pipe respectively.

The pulsations in the main chamber and in the pipes and reservoirs are visible on the above charts.

The chart below show the integrated mass flows in and out of the chamber through compressor ports, blue and red line respectively, actual mass in the chamber, green line, and the integrated leakage flows in and out of the chamber. These are all shown as the function of rotational angle.

Results presented on the screen show calculated integral parameters and breakdown of Powers. IN case of oil free machine the oil drag power is equal to 0.

=== PROGRAM THERMODYNAMICS ===				
RPM Flow[m3/min] Pow[kW] 12000 14.2083 55.8 1 Indicated Power [kW]:49.86155 5 5 shaft Seal Power [kW]:3.6 5 6 Bearing Power [kW]:2.33825 6 6 Oil Drag Power [kW]:0 10 10	P1[b] 3	P2[b] 196.09	т2[оС] 0	oil flow[kg/s]
Total shaft Power [kw]:55.7998 Number of conv. loops :10				
Time elapsed: 00:00:21.0901734				
=== PROGRAM THERMODYNAMICS END ===				

▶ View Thermodynamic Report

```
SCORG - Thermodynamic Performance Calculation
          Date: 20/03/2021 22:35:52
Gas properties
     M = 28.97 kmol/kg
R = 287 J/kgK
                               Cp/Cv = 1.4
                                     = 1
Machine: Oil Free Compressor
     Lobe combination : 3/5
                        : 127/160 18
     Size
     Mechanical seals : 1
Tinl = 19.86 degC
                        Tout = 196.09 degC
Pinl = 1 bar
                       Pout = 3
                                      bar
             kg/s
Moil = 0
                       Toil = 40.01
                                      degC
                       Poil = 7
                                      bar
Volume Index Vi
                       = 1.8
                        = 2.28
Pressure Ratio Pi
Speed
                        = 12000 rpm
Tip speed
                        = 80
                                m/s
Volume flow rate
                       = 14.21
                                  m3/min
                       = 852.6
                                  m3/h
Mass flow rate
                       = 1013.78 kg/h
Volumetric efficiency = 69.19
                                 ~ %
Power (excl. gearbox) = 55.8
                                  kW
                       = 74.83
                                  HP
Specific power = 3.93
Adiabatic efficiency = 54.77
                       = 3.93
                                  kw/m3/min
                                  %
Theoretical mass flow = 1465.22 kg/h
Discharge mass flow = 1013.78 kg/h
```

4.2 Changing compressor geometry and operating parameters

The thermodynamic multi-chamber model allows variation of parameters and evaluation of their influence on the performance of the compressor. As an example the following changes will be introduced:

- Radial clearance will be changed to 50 micrometers,
- Volume Index will be increased to 2.2
- Discharge pressure will be reduced to 2.5 bar
- Change the size of the discharge pipe (flange) to 70 mm

To introduce these changes please alter windows below:

Profile

Profile Setup		
Profile Choice	User Sp 🔻	
Axis Distance	93	mm
Z1	3	
Z2	5	
GAPI	0.18	mm
GAPR	0.05	mm
GAPA	0.05	mm
Clearance Distribution	Clearences	
User Profile		

Geometry

Rotor Configuration					
Machine Configuration					
Machine Type	Screw 🗸				
N Gate	1				
Compression Start	0	Deg			
Compression End	189.49	Deg			
Volume Index	2.2				
Angle of Radial Dischar	0	Deg			
E Rotor	211	GPa			
aL Rotor	1E-05	m/m/℃			
E Casing	211	GPa			
αL Casing	1E-05	m/m/℃			
Wall Roughness	0	mm			
Restraints					

Thermodynamics

Working Condit	ions	
Wtip	80	m/s
Rotor Speed	12000	RPM
PO	1	bar
Pr	2.5	bar
то	19.85	°C
Tr	76.85	°C
Теvp	-5.15	°C
Tcond	39.85	°C
T Ambient	19.85	°C
Ts	-273.15	°C
Х	1	
Working Fluid		
Oil Injection		
Bearings and seals		

Thermodynamic Controls

Domains

+ + +	 Low Pressure Pipe Low Pressure Reservoir Low Pressure Port High Pressure Port High Pressure Reservoir 		
Dia	meter	70	mm
Ler	ngth	200	mm

▶ Run Geometry calculation; Run Thermodynamics and Run Port Generation

- ▶ Inspect the results and compare with the results obtained previously
 - a) Geometry Diagrams Note the difference in the size of the discharge port, Compression angle and the size of radial gaps

★SCORG[™]

b) Note the difference in the size and shape of the discharge port

c) Note the difference in the thermodynamic performance The compressor now over compresses but due to larger flow area behind the compressor introduces lower losses in the discharge reservoir and pipes and therefore lower pressure.

d) Inspect Thermodynamic report

```
SCORG - Thermodynamic Performance Calculation
          Date: 20/03/2021 22:38:23
Gas properties
    M = 28.97 kmol/kg
R = 287 J/kgK
                               Cp/Cv = 1.4
                                     = 1
Machine: Oil Free Compressor
     Lobe combination : 3/5
                        : 127/160 22
     Size
     Mechanical seals : 1
_____
Tinl = 19.86 degC
Pinl = 1 bar
Moil = 0 kg/s
                       Tout = 143.76 degC
                       Pout = 2.5 bar
Toil = 40.01 degC
                       Poil = 7
                                      bar
Volume Index Vi
                       = 2.2
Pressure Ratio Pi
                       = 3.02
                       = 12000 rpm
Speed
Tip speed
                       = 80
                             m/s
Volume flow rate = 16.32
= 979.2
                                  m3/min
                       = 979.2
                                  m3/h
Mass flow rate
                       = 1164.48 kg/h
Volumetric efficiency = 79.47
                                  %
Power (excl. gearbox) = 46.52
                                  kW
                       = 62.38
                                  HP
Specific power = 2.85
                                  kW/m3/min
Adiabatic efficiency = 61.24
                                  %
Theoretical mass flow = 1465.22 kg/h
Discharge mass flow = 1164.48 kg/h
```

4.3 Calculating oil free case for variety of operating conditions

To calculate multiple parameters thermodynamic case, please set following parameters

			Rotor Configuration			
				Machine Configural	tion	
				Machine Type	Compre 💌]
Profile Setup				N Gate	1	
Profile Choice	User Sp 💌			Compression Start	0	Deg
Axis Distance	93	mm		Compression End	162	Deg
Z1	3			Volume Index	1.8	
Z2	5			E Rotor	211	GPa
GAPI	0.18	mm		αL Rotor	1E-05	m/m/°C
GAPR	0.18	mm		E Casing	211	GPa
GAPA	0.05	mm		αL Casing	1E-05	m/m/°C
Clearance Distribution	Clearences					
			1	E Restraints		
User Profile				Botor Movements		

The results will be obtained for speeds from 9000 to 15750 rpm and pressures from 1.5 to 2.5 bar.

Working Conditions
 Working Fluid
 Oil Injection

Oil Injection

Working Condition	าร	
Wtip	60	m/s
Rotor Speed	9000	RPM
PO	1	bar
Pr	1.5	bar
то	20	°C
Tr	76.85	°C
Теvp	-5.15	°C
Tcond	39.85	°C
T Ambient	19.85	°C
Include heat transfer	No 🗸	
X	1	
Working Fluid		
Huid Injection		

F	/	bar
Т	40	°C
Injection Angle	60	Deg
Axial Position	100	mm
Port Diameter	5	mm
Doil	0.01	mm
CpOil	2000	J/(kg.K)
p	845	kg/m³
Viscosity of Oil	5E-05	m²/s
Bearings and s	eals	
Bearings and s Bearing Type	Rolling	•
Bearings and s Bearing Type N Shaft	Rolling	•
Bearings and s Bearing Type N Shaft Seal Ploss	Rolling 4 300	▼ W/1000
∃ Bearings and s Bearing Type N Shaft Seal Ploss Diameter Factor	Rolling 4 300 0.023	▼ W/1000
Bearings and s Bearing Type N Shaft Seal Ploss Diameter Factor Speed Factor	Rolling 4 300 0.023 0.001	▼ W/1000

Off

•

- Bearings and seals
- Additional Injection Port
- Thermodynamic Controls

Working Conditio	ns				
Working Fluid					
Huid Injection					
Bearings and sea	ls		Ľ	Set Short Report	t Settings
Additional Injection	on Port		Working Conditions		
Thermodynamic C	Controls		Working Fluid	Save	
Speed loop	10		Oil Injection		
Psuc loop	1		Bearings and seals	V WTP	V Psp
Pdis loop	3		Thermodynamic Cor	🗸 N	🗸 ŋad
Convergence loop	20		Speed loop	V Q	✓ Tdis
∆Wtip	5	m/s	Psuc loop	🔽 Qn	V P1
ΔPsuc	0	bar	Pdis loop	- u	
∆Pdis	0.5	bar	Convergence loop	M M	V FZ
۸Tevp	5	°C	∆Wtip	🗹 ηv	Moil
ATcop	5	Ϋ́	ΔPsuc	Power	
	J		∆Pdis		
Clearance adjustment	No	1	∆Tevp		
Short report settings	Settings		∆Tcon		
Thermodynamic solver	SCORG 🗸		Short report settings	Settings	4
		2			

Once the results are calculated, these can be viewed in the report as presented before or exported to excel where these could be used for preparing diagrams etc. To export in excel select the Thermo_Short.txt report from the Case tree, click on the right mouse button and select 'Export to excel' as shown in the figure

C
🖃 🛅 SCORG_Thermodynamics_Tuti
🗄 🛅 Grid
🗄 🛅 Profile
🗄 🛅 Thermodynamics
🗄 🛅 Input
🗄 🛅 Output
🚊 🛅 Reports
Geometry.txt
Thermo_Complete.txt
Themo_Normal.txt
Thoma Chart ht
Open the Folder
Export to MS Excel
Graphical View

The results will be in the form shown below.

4.4 Calculating Oil injected case

Majority of screw compressors today are oil injected. Oil is injected to seal, cool and lubricate the rotors. Rotors are in direct contact. Oil injected compressors achieve higher pressure ratios and lower discharge temperatures, rotate at lower speeds than oil free compressors and allow clearances to be much lower than in oil free machines.

The same compressor will be used for oil injection calculation.

The profile will be set with nominal clearance of 50 micrometers, Volume index will be set to 5, tip speed to 40m/s, discharge pressure to 8 bar. Oil injection will be switched on, Oil injection pressure set to 7 bar through oil injection port positioned at 60 degrees of the rotation of the male rotor from closing of the suction port and oil will be injected at 40 degC.

Please set the values as indicated in the figure below

Profile

Profile Setup		
Profile Choice	User Sp 🗸	
Axis Distance	93	mm
Z1	3	
Z2	5	
GAPI	0.05	mm
GAPR	0.05	mm
GAPA	0.05	mm
NL	5	
NR	0	

Geometry

Machine Configuration				
Machine Type	Screw	\sim		
N Gate	1			
Compression Start	0		Deg	
Compression End	259.899		Deg	
Volume Index	5			
Angle of Radial Dischar	0		Deg	
E Rotor	211		GPa	
αL Rotor	1E-05		m/m/℃	
E Casing	211		GPa	
αL Casing	1E-05		m/m/°C	
Wall Roughness	0		mm	

Domains

 Low Pressure Pipe Low Pressure Reservoir Low Pressure Port High Pressure Port 						
High Pressure Rese	rvoir					
Diameter 75 mm						
Length 75 mm						
High Pressure Pipe						
Diameter	35	mm				
Length	200	mm				

Thermodynamics

Working Condition	ons		
Wtip	40		m/s
Rotor Speed	6000		RPM
P0	1		bar
Pr	8		bar
то	20		°C
Tr	76.85		°C
Теvp	-5.15		°C
Tcond	39.85		°C
T Ambient	19.85		°C
Include heat transfer	No	\sim	
X	1		

- Working Fluid
- Huid Injection
- Bearings and seals
- Additional Injection Port
- Thermodynamic Controls

Working Condition	ns		
Working Fluid			
Fluid Injection			
Fluid Injection	Oil abs 🗸		^
Р	7	bar	
Т	40	°C	
Injection Angle	60	Deg	
Axial Position	100	mm	
Port Diameter	5	mm	
Doil	0.01	mm	
CpOil	2000	J/(kg.K)	
ρ	845	kg/m³	
Viscosity of Oil	1E-05	m²/s	
Multiple injection holes	Setup		
Gas diluted in oil	0	%	¥
Bearings and sea	als		

Dearings and sears

Additional Injection Port
 Thermodynamic Controls

 Working Condition Working Fluid Huid Injection Bearings and seal Additional Injection Thermodynamic C 	ns Is on Port controls	
Speed loop	1	
Psuc loop	1	
Pdis loop	1	
Convergence loop	20	
∆Wtip	5	m/s
ΔPsuc	0	bar
∆Pdis	0.5	bar
∆Tevp	5	°C
∆Tcon	5	°C
Clearance adjustment	No	~
Short report settings	Settings	
Thermodynamic solver	SCORG	~

- Working Conditions
- Working Fluid
- Huid Injection
- Bearings and seals

Bearing Type	Rolling 🗸					
N Shaft	1					
Seal Ploss	300	W/1000				
Diameter Factor	0.023					
Speed Factor	0.001					
Additional Injection Port						

- Thermodynamic Controls
 - ► Calculate thermodynamics

View diagrams

Notice the red line which represents the oil in the working chamber. Oil is injected at 60 deg and is used to cool the air. Despite the discharge pressure reaching almost 9 bar, the discharge temperature is around 80 deg C.

The results displayed in the results window:

RPM Flow[m3/min] Pow[kW] 6000 8.2763 54.68 1 Indicated Power [kW]:43.06776 shaft Seal Power [kW]:1.8 Bearing Power [kW]:2.87728 0il Drag Power [kW]:6.93087	P1[b] 8	P2[b] 85.75	T2[oC] 0.3364	oil flow[kg/s]
Total Shaft Power [kW]:54.6759 Number of conv. loops :7				
Time elapsed: 00:00:15.7901562				

The report

SCORG - Thermodynamic Performance Calculation Date: 20/03/2021 22:57:02 Gas properties M = 28.97 kmol/kg R = 287 J/kgK Cp/Cv = 1.4= 1 Machine: Oil Injected Compressor Lobe combination : 3/5 Size : 127/160 50 Mechanical seals : 1 _____ Tinl = 20.01 degC Pinl = 1 bar Moil = 0.34 kg/s Tout = 85.75 degC Pout = 8 bar Toil = 40.01 degC Poil = 7 bar Volume Index Vi = 5 Pressure Ratio Pi = 9.52 Speed = 6000 rpm = 40 m/s Tip speed = 8.28 m3/min = 496.8 m3/h Volume flow rate Mass flow rate = 590.22 kg/h Volumetric efficiency = 80.61 % Power (excl. gearbox) = 54.68 kW = 73.33 HP Specific power = 6.61 kW/m3/min Adiabatic efficiency = 71.65 % Theoretical mass flow = 732.24 kg/h Discharge mass flow = 590.22 kg/h

Additional port

Often, oil injected screw compressor have additional injection port, which is in refrigeration called economizer port. IN SCORG, additional injection port is enabled through Thermodynamics->Additional Injection Port tab:

 Working Conditions Working Huid Huid Injection Bearings and seals Additional Injection 	s n Port				
Additional Port	Yes 🗸 🗸				
P	6	bar			
Т	70	°C			
Fluid Quality	Gas 🗸 🗸				
Injection Angle	99.981	Deg			
Axial Position	100	mm			
Port Diameter	20	mm			
Thermodynamic Controls					

It is necessary to specify the position and size of the additional port as well as the pressure and temperature in the port. Before thermodynamics can be calculated, it is important to calculate geometry. The addional injection port is shown as exonomiser in the figure below

Once thermodynamics is calculated, it is possible to observe results trhough the thermodynamic diagrams below.

Notice the change in the pressure diagram where a sudden increase in the pressure can be observed from the angle of 100 deg.

The additional injection port can be also used for injection of additional liquid in the working domain. In oil injected compressors the liquid injected is oil. To enable oil injection instead gas/vapour injection through the additional injection port it is necessary to set Fluid quality to Liquid as shown in the figure below.

Working Condition	5	
Working Fluid		
Liquid Injection		
Bearings and seals	;	
Additional Injection	n Port	
Additional Port	Yes 🔻	
Р	6	bar
Т	70	°C
Fluid Quality	Liquid 🗸 🔻	
Injection Angle	100	Deg
Axial Position	100	mm
Port Diameter	5	mm
Thermodynamic Co	ntrols	

This same liquid selected in the Liquid injection input will be injected through the additional injection port. In this case it is oil. Since the injection liquid is much denser than the gas, the size of the port is normally smaller as shown in the figure.

The results of thermodynamics calculation without the additional oil injection are shown below>

RPM Flow[m3/min] 6000 8.2763 54.0 Indicated Power [kw]:4 Shaft Seal Power [kw]:5 Bearing Power [kw]:5 Oil Drag Power [kw]:6	Pow[kW] 68 1 43.06776 1.8 2.87728 6.93087	P1[b] 8	P2[b] 85.75	T2[oC] 0.3364	oil flow[kg/s]
Total Shaft Power [kW]: Number of conv. loops :	54.6759 7				
Time elapsed: 00:00:15	.7901562				

Once the additional oil injection is enabled, the quantity of oil and the performance will change dramatically:

RPM Flow[m3/min] 6000 7.6907 Indicated Power [kv Shaft Seal Power [kv Bearing Power [kv Oil Drag Power [kv] Pow[kW] 58.46 1 w]:53.04531 w]:1.8 w]:3.54407 w]:0.06858	P1[b] 8	P2[b] 210.7	T2[oC] 0.5898	oil flow[kg/s]
Total Shaft Power [kv Number of conv. loops	N]:58.45796 5 :6				
Time elapsed: 00:00	:09.7587221				
=== PROGRAM THERMODY	NAMICS END ===				

Almost double amount of oil is injected which resulted in the smaller indicated power but the drag losses due to oil in the chamber increased leading to overall slightly higher power.

The discharge temperature also changed as shown in the figure below.

5 Thermodynamics in batch mode

Thermodynamic calculations can also be run in a batch mode. This means that calculations can be performed outside of SCORG Graphical User Interface for the convenience of automatic variation of parameters and in particular for optimization of screw compressors.

SCORG program operates in two folders, namely the Installation Folder and the Project Folder.

The Installation folder is the folder in which SCORG was originally installed. Usually that will be C:\SCORG or C:\Program Files\SCORG. The example of the SCORG Installation

Organize 🔻 🛛 Include in libra	ry ▼ Share with ▼ New folder			!≡ ▼ [0
🖌 👉 Favorites	Name	Date modified	Туре 🔨 🗸	Size	
E Desktop	Config	27/11/2016 12:48	File folder		
Downloads	Data	27/11/2016 12:47	File folder		
🖳 Recent Places	Database	27/11/2016 12:47	File folder		
	📕 fluids	27/11/2016 12:48	File folder		
🛯 🥽 Libraries	퉬 Geom	27/11/2016 18:43	File folder		
Documents	🌗 Grid	27/11/2016 16:40	File folder		
🖻 👌 Music	퉬 License	27/11/2016 12:48	File folder		
🛛 🔛 Pictures	퉬 mixtures	27/11/2016 12:47	File folder		
Videos	퉬 Scorpath	27/11/2016 12:48	File folder		
	퉬 Templates	27/11/2016 12:48	File folder		
> 🖳 Computer	🌗 Thermo	27/11/2016 12:48	File folder		
	🌗 Tutorials	27/11/2016 12:47	File folder		
🖓 🗣 Network	퉬 User Manual	27/11/2016 12:48	File folder		
	🔁 readme.pdf	05/08/2016 12:47	Adobe Acrobat D	152 KB	
	🛃 Scorg.exe	24/11/2016 14:32	Application	3,150 KB	
	🚼 Thermo.exe	24/11/2016 14:32	Application	111 KB	
	Scorg.ini	27/11/2016 12:53	Configuration sett	1 KB	
	🚳 Geom.bat	27/11/2016 18:43	Windows Batch File	1 KB	

folder is shown in the figure below.

The files required to run thermodynamics in the batch mode from the Installation folder are:

- Thermo.exe
- Geom.bat

The project files are stored in the Project Folder. To identify or modify the active Project folder, please open Scorg.ini file from the Installation folder in any text editor, for example Notepad as shown in the figure below. The project Folder is shown as Project Path.

ſ	🗍 Scorg.ini - Notepad	3
	File Edit Format View Help	
	[Project Path] ProjectPath=C:\SCORG cases\SCORGThermodynamics\SCORG_Thermodynamics_Tutorial#	*
	[Installed Modules] Grid Geom	
		-

Open the Tutorial folder SCORG_Thermodynamics and identify file named: SCORG_Thermodynamics_Tutorial.spf. This file is textual file which contains all input parameters for the Project you are working on. Parameters are grouped in smaller set of parameters related to an activity, namely, profile definition, machine geometry, thermodynamics and grid.

SCORG_Th	nermodynami	ics_Tutorial.sp	of - Notepa	ad										- • ×
File Edit F	ormat View	w Help												
[SCORG V5	.4.]													*
[Rotor Pro L1 ILOBE 0 L2 E 0.0000	ofile Par Axis 0.09300	ameters])0 PSI 0.005000	z1 3	Z2 F 5 (R1 0.030000	R 0.028000 R2 0.0	R0 0.002 05400	:000 0 R3 0.012000	GAPI).000180 R4 0.004	DAFIL 0.031 000	EPR 211 Alpha1 0.300	000000000.0 Alpha2 0.300	0 C_t 0 0.0 EN 0.500	herm_R: 0001000 Tamb 293.000	E
[User Rot UserMale= UserFemal L1 aal1 0.0000	or Profil C:\Users\ e=C:\User 0 1	e] \ako2001\I `s\ako2001 <s1 L.0000</s1 	Documen 1\Docum ys1 1.0	ts\Develo ents\Deve 000	oment\SCORO lopment\SCO lf1 aa 0 0	G cases\SC DRG cases\ al2 .00000	ORGThermody SCORGThermo xs2 1.0000	namics\SCOR odynamics\SCO ys2 1.0000	G_Thermody ORG_Thermo 1f2 0	namics_T dynamics_ 0Ax 0.0	utorial\Gri _Tutorial\G is 93000	d\Input\P10 rid\Input\P dAxis 0.093000)riginal.dat# '20riginal.dat wProf 1	#
[Screw Mat L1 EL 1.6000 L2 itype 0 L3 01S 0.05000 L4 x-Msuc 0.00000 L5 IBType 0	chine Geo WR 4. NGLobe 1 00 00 NSeals 4	metry] tAP .974 ELRO 0.203711 D1S 0.075000 y-Msuc 0.000000 PSeal 300.000	pst 0.000	000 GAPR 0.000180 01D 0.050000 x-Mdis 0.000000 FDia 0.022850	pen 0.000000 GAP4 0.00 D1D 0.07! y-Md 0.000 FSpe: 0.000	ipit 0 20050 5000 is 0000 ad 08350	cv isectcv 0 FIIS 0.000000 02S 0.050000 x-Fsuc 0.000000	r grdx 0.000000 FI1C 2.827 D2S 0.0750 y-Fsuc 0.0000	grdy 0.000 VI 1.8 0 00 0 x 00 0	000 00 2D .050000 -Fdis .000000	grdz 0.000000 0.075 y-Fdi 0.000	mheli 0 000 2 s 2 000 0	x gpos rol 0 0.1 110000000000.0 1-M 0.000000	bang 000 0 C_ 0 0. Z-F 0.000000
[Geometry L1 iclea 0	control iforc 0	parameter imap O	rs] iSeal 0	iGapI_R 0	iGapI_C io 0 0	GapR_R iGa 0	ıpR_C							
[Working 0 L1 WTP 60.000	Conditons 0 g	;] ENROTO 9000.03	P0 10	0000.00	PR 15000(0.00	T0 293.150	TR 350.000	TVA 268	P .000	TKON 313.000	TS 0.000	EX) 1	
[Working L1 NID 0	Fluid] KAPPA 1.40	RGA5 287.	000	Z 1.000	NC 3.00(0 (F	LUID.FLD(I) XYGEN.FLD) XKG(I 0.220) 000	I=1,NC) "NITROGE	N.FLD"	0.770000	"502.FL	D" 0
[Oil Inje L1 OILR 0	ction] POIL 700000.	. 00	TOIL 313.15	0 1	IOIL .047	ZOIL 0.100000	DOIL 0.005	D 5000 0	SOIL .000010	COIL 2000	.0000	ROIL 845.0000	VI5COIL 0.000050	0
[Thermodyn L1 IPRNT 1	namic Cor LW 10	LPS 1	ameters LPD 3] LC 4	DWTP 5.0000	DPS 0.000	DPD 5000	00.000	DTVAP 5.000	DTCON 5.000				
[GRID con L1 ndist 40	trol para npod 7	ameters] nang 40	ic 0	m∨ 1	isectNo 400	jrack 50	naxial i 0 C	icursectnk)						
[CONTROL L1 krot 2	Switches] krack 0	kdist 0	imesh 0	irotm O	iipor io 1 1	opor ipr 0	ep jstart 1	: jend 40						
[DISTRIBU L1 fad11 0.00	TION para fad1 0.00	ameters] L2 ia) 3	add1 6	fad21 0.00	fad22 0.00	iadd2 15	cdi1 2.000	cdi2 0.300	frsm 0.800	i 1	line			
[MESHING L1 ak12	parameter ak3	•s] 34	sco	ntr	iorth	al1	al2	ngrsm	fgrsm					-
<														►

It is always recommended that a Project case is set up using SCORG GUI as explained throughout this tutorial first so that all parameters in input files are set properly. Then the parameters in the .spf file can be changed as required. Please do not forget to save file before thermodynamics is run.

Also, similarly to the case run through GUI, every time some of geometric inputs is changed, I is necessary to run geometry calculation.

To run geometry calculation use Geom.bat file form the Install Folder. The results of calculation will be shown on the screen in window similar to the one shown in the figure below.

C:\WINDOWS\system32\cmd.exe				
=== PROGRAM GEOM ===				×
######################################	reometry dat	a #####		Ξ
Rotor centre distance:	93.0	100 mm		
Pitch circle diameters:	69.750	116.250	mm	
Innew wotow diameters:	45 535	58 473	mm mm	
Diameters difference :	30.894	30.894	mm	
Wrap angle:	284.989	170.994	deg	
Rotor lead:	257.337	428.896	mm	
Helix angle:	40.4	15 deg		
Lead angle:	49.5	85 deg		
Rotor length:	203.7	'18 mm		
Rotor cross area:	1739.	1161.	mm2	
POTENTIAL chamber volume:	59077	'7. mm3		
POTENTIAL disp. volume:	177233	0. mm3/r	ev	
ACTUAL chamber volume	57041	2. mm3		
HCIUHL disp. volume:	171123	5. MM3/P	ev	
POTENTIAL values are based of ACTUAL values are corrected	n the chambe for wrap ang	r cross-s le reduct	ectional area a ion factor	und length
MAX SL length (chamber):	209.4	95 mm		
Blow-hole area:	3.4	53 mm2		
			=====	
=== END PROGRAM GEOM ===				
Press any key to continue				
				*

The same results could be viewed any time by opening a report named Gemoetry.txt in the folder shown below.

Image: Score of the state									
Organize 🔻 🧊 Open 🔻 Share with 🔻	New folder		:== •	- 1 0					
SCORGThermodynamics SCORG_Thermodynamics_Tutorial Grid	*	Development library Reports		Arrange by:	Folder 🔻				
Derofile		Name	Date modified	Туре	Size				
Thermodynamics	-	Thermo_Short.txt	20/09/2016 20:57	Text Document	6 KB				
🌗 Input	=	Thermo_Normal.txt	20/09/2016 20:57	Text Document	27 KB				
January Output		Thermo_Complete.txt	20/09/2016 20:57	Text Document	356 KB				
Reports		Geometry.txt	27/11/2016 21:43	Text Document	2 KB				
Results	-								
Geometry.txt Date modified: 27/11/ Text Document Size: 1.69 K	/2016 B	21:43 Date created: 19/09/2016 10:02							

Equally, thermodynamics is run using the file Thermo.exe. Reports are stored in the same report folder in the Project Folder where geometry.txt was also located.

NOTE: Using geometry and thermodynamic calculation in batch mode requires good knowledge on the possible combination of input parameters. The inadequate combination of input parameters will lead to incorrect results.

6 Calculation of bearing forces

Once Thermodynamic results are obtained, bearing forces may be calculated. Calculation of bearing forces is run using the button indicated below in red circle.

This command also initiates the boundary map generation which calculates distribution of pressure and temperature on the rotors and casing.

The force diagrams are activated using the icon circled below. Alternatively these could be initiated through the drop down view menu or by pressing F12 button.

File	Edit	Run	View	Units	Help													
1 🗋 🖻	7 🛃	~ ^	0	2 🗙 I	<u></u>	G T 🗳	8	Ê	٢	60 [10	0	-	5709	G	4	↓F	🔈 🖂 😒

Radial forces on the rotors at Low pressure (LP) and high pressure (HP) end bearings:

• forces on the rotors:

• Torque on the male and female rotors:

• Vector Angles for radial forces:

Please note that the forces on bearings depend on the relative position of bearings to the machine low and high pressure ends. The position of bearings is set using the Geometry->Restraints table below:

Restraints		
01S	50	mm
D1S	75	mm
O1D	50	mm
D1D	75	mm
02S	50	mm
D2S	75	mm
O2D	50	mm
D2D	75	mm

Graphical representation of bearing positions is shown in the Restraints Input window below. This window opens automatically when the Restraints command. For more details on how the forces are calculated please refer to the User Manual Chapter 8.11.

The report on calculation of forces is accessible through drop down View>Report menu in the form below. It reports on the configuration, thermodynamics and forces.

	=======			======	
########	Screw	compressor	geometry	data	##########
	Date: 2	5-Jun-2017	Time: 18	3:50:35	
Rotor Pitch Outer Inner Diame	centre Number circle (rotor (rotor (ters di He Rote	distance: of lobes: diameters: diameters: diameters: fference : rap angle: otor lead: lix angle: ead angle: or length:	93 69.750 125.317 65.353 29.982 306.647 250.106 41 48 213	3.000 116 120 60 29 183 416 .223 3.777 3.039	nm 5 .250 mm .181 mm .216 mm .983 mm .988 deg .843 mm deg deg nm
Thermodyn Gas pr R	amic Res operties 1 = 28.9 2 = 287	sults 5 97 kmol/kg J/kgK	Cp/C Z	CV = 1.4 = 1	4

Machine: Oil Free Compressor

Lobe combinati Size Mechanical sea	on : 3/5 : 125/170 18 ls : 4	
Tinl = 19.86 degC Pinl = 1 bar Moil = 0 kg/s	Tout = 199.73 degC Pout = 4 bar Toil = 36.86 degC	
Volume Index Vi Pressure Ratio Pi Speed Tip speed	= 1.8 = 2.28 = 12344.5 rpm = 81 m/s	
Volume flow rate	= 15.66 m3/min - 939.6 m3/h	
Mass flow rate Volumetric efficier	= 1117.44 kg/h cy = 77.04 %	
Power (excl. gearbo	x) = 83.05 kw = 111 37 HP	
Specific power Adiabatic efficienc	= 5.3 kW/m3/min y = 53.46 %	
Theoretical mass fl Discharge mass flow Suction mass flow Leakage mass flow	ow = 1450.43 kg/h = 1117.44 kg/h = 1347.96 kg/h = 230.52 kg/h	
######## Screw compre	ssor bearing forces ######	##
Date: 25-Jun-	2017 Time: 18:50:36	
Radial force HP: 1 Radial force LP: Vector angle HP: Vector angle LP: Axial force : 1 Torque :	Male Female 463.448 1857.830 N 849.012 1061.457 N 60.652 -52.302 deg 44.619 -43.455 deg 641.678 375.738 N 44.447 -6.355 Nm	

7 Thermodynamic 3D Results

The thermodynamic results of pressure and temperature distribution on the surface of rotors are used as initial and boundary conditions for CFD (Computational Fluid Dynamics) and structural analysis (FEA). These boundary pressures and temperatures can be graphically shown in 3D view on the surface of rotors and casing. To obtain results for both boundary conditions and 3D thermodynamic results, it is necessary to perform calculation of boundary distribution which is in detail explained in 10.15. Details about principles of calculation of boundary conditions are given in Paper Buckney et all, 2016. Boundary conditions are calculated together with the force calculation as described in Chapter 6.

 File
 Edit
 Run
 View
 Units
 Help

 Image: Image:

Once calculated, the 3D thermodynamic view icon shown in green above will activate. Position the mouse pointer to that icon and click on the left mouse button to activate 3D display.

Next three screenshots show the available diagrams:

• Example of pressure distribution on the surface of rotors and in the working domain:

• Example of temperature distribution on the surface of rotors

Pressure and temperature in the working domain shown above are suitable for initial condition for Computational Fluid dynamics. These could be imported in any CFD software from ASCII files based on which these diagrams are made. These are:

- Test Case>Thermodynamics>Output>Mapping>Surf_p_R1_HOME.txt for pressure distribution on the male rotor,
- Test Case>Thermodynamics>Output>Mapping>Surf_p_R2_HOME.txt for pressure distribution on the female rotor,
- Test Case>Thermodynamics>Output>Mapping>Surf_T_R1_HOME.txt for temperature distribution on the male rotor,
- Test Case>Thermodynamics>Output>Mapping>Surf_T_R2_HOME.txt for Temperature distribution on the female rotor,

The above files are in ASCI format containing X, Y and Z coordinate on the respective rotor and a value of the property displayed in SI Units. Pressures are given in Pa while temperatures are in deg C.

In the above example the pressure distribution on the male rotor is shown from file Surf_p_R1_HOME.txt. In order for this to be used for CFD or FEA the file can be directly imported into any commercial CFD or FEM software through their initial and boundary condition setting routines.

• Example of the thermodynamic cyclically time averaged Temperature result on rotors:

• Example of thermodynamic cyclically time averaged Temperature result on the casing

Cycle averaged temperatures on rotors and casing shown in the above graphs are suitable for boundary conditions for finite element analysis. These could be imported in any FAE software from ASCII files based on which these diagrams are made. These are:

- Test Case>Thermodynamics>Output>Mapping>Surf_T_R1_average2.txt for the average temperature on the male rotor,
- Test Case>Thermodynamics>Output>Mapping>Surf_T_R2_average2.txt for the average temperature on the female rotor,
- Test Case>Thermodynamics>Output>Mapping>Surf_T_B1.txt for the average temperature on the male rotor casing bore,
- Test Case>Thermodynamics>Output>Mapping>Surf_T_B2.txt for the average temperature on the female rotor casing bore,

The format of the above files is same as for the files shown earlier. The example below is for the cycle averaged temperature of the casing on the male rotor. For principles of cycle averaging, please refer to Buckney, Kovacevic, Stosic, 2016.

Surf_T_B1.txt - Notepad									
File Edit Format	View Help								
File Edit Format 4.8694912E-02 4.7999304E-02 4.7289077E-02 4.6564445E-02 4.5825630E-02 4.5072854E-02 4.306349E-02 4.306349E-02 4.3526348E-02 4.3526348E-02 4.3526348E-02 4.1926816E-02 4.1926816E-02 4.107770E-02 4.0276200E-02 3.9432362E-02 3.8576514E-02 3.7708916E-02 3.6829825E-02 3.5939526E-02 3.5038274E-02 3.4126345E-02 3.204037E-02 3.204037E-02	View Help -3.9432354E-02 -4.0276192E-02 -4.1107763E-02 -4.1926805E-02 -4.2733084E-02 -4.3526344E-02 -4.55072846E-02 -4.5825623E-02 -4.5825623E-02 -4.5825623E-02 -4.7289073E-02 -4.7289073E-02 -4.7999296E-02 -4.8694905E-02 -4.9375676E-02 -5.0691899E-02 -5.1326949E-02 -5.1326949E-02 -5.1946361E-02 -5.2549951E-02 -5.1326925000	0.2130394 0.2130394	19.37861 19.37628 19.37420 19.37242 19.37091 19.36965 19.36858 19.36767 19.36691 19.36572 19.36572 19.36572 19.36497 19.36497 19.36475 19.36458 19.36458 19.36458 19.36475 19.36475 19.36495 19.36495						
3.2271590E-02	-5.3708933E-02	0.2130394	19.36551						
3.1329323E-02 3.0377513E-02 2.9416459E-02	-5.42639/2E-02 -5.4802477E-02 -5.5324286E-02	0.2130394 0.2130394 0.2130394	19.36580 19.36613 19.36651						
2.8446434E-02 2.7467746E-02	-5.5829253E-02 -5.6317206E-02	0.2130394 0.2130394	19.36694 19.36743						
2.6480692E-02 2.5485570E-02 2.4482692E-02	-5.7241511E-02 -5.7677578E-02	0.2130394 0.2130394 0.2130394	19.36799 19.36862 19.36930						

8 Summary

This document describes the steps to setup and calculation of thermodynamic performance predictions using multi chamber thermodynamics. More detailed information on using SCORG can be found in user guide (SCORG, 2018). Thermodynamic calculations are used as the

preliminary performance predictions which could be utilised for design of screw machines, initial conditions for CFD and FEM.

9 Bibliography

Buckney D, Kovacevic A, Stosic N, *Design and evaluation of rotor clearances for oilinjected screw compressors*, Proceedings of the IMechE, Part E: Journal of Process Mechanical Engineering, 2016 doi:10.1177/0954408916660342

CD Adapco Star CCM+ V10.06, 2016. User Guide, London: CD Adapco.

DISCO, 2007. DISCO, User Help Manual, London: City University.

Kovacevic, A., Stosic, N. & Smith, I. K., 2007. *Screw compressors - Three dimensional computational fluid dynamics and solid fluid interaction, ISBN 3-540-36302-5.* 1 ed. New York: Springer-Verlag Berlin Heidelberg.

Rane, S., 2015. *Grid Generation and CFD analysis of Variable Geometry Screw Machines,* London: City University London.

SCORG, 2018. SCORG, User Help Manual, London: City University.

Stosic, N., Smith, I. K. & Kovacevic, A., 2005. *Screw compressors: Mathematical modeling and performance calculation, ISBN 3540242759.* 1 ed. London: Springer.

End of Document

PDM Analysis Ltd 8 Eccleston Close, Barnet, EN4 9EZ, United Kingdom +44 20 7040 8780 <u>SCORG@PDMAnalysis.co.uk</u> <u>http://www.pdmanalysis.co.uk</u>

